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Abstract-The influence of Kachanov-Rabotnov type damage on creep buckling of a compressed column is
investigated, All deformation and damage of the column is assumed to take place at a "creep and damage
hinge". Instantaneous buckling as well as creep buckling are shown to be represented by a certain instability
surface in strain-damge-load space, The special case of purely brittle, Le. non deforming, compressive
instability is studied in some detail.

I. INTRODUCTION

Two phenomena characterize a material under creep conditions: the development of strain and of
damage, both increasing with time under constant applied load. Relations between strain, stress
and time are usually known as creep laws and relations between damage, stress and time as
damage laws. Although recent microscopic analyses of strain and damage in engineering
materials have given much insight into the physics of creep, phenomenological description is still
preferred in analyzing macroscopic structural behaviour, see Odqvist and Hult[l], Hult[2],
Rabotnov[3] and Penny and Marriott[4].

The bulk of structural creep analyses reported in literature concerns the idealized case
without any damage creation. Expressions for lifetime, defined by criteria of maximum stress or
maximum deformation, have been derived for various structural elements subject to various
loading histories.

It is only to be expected that simultaneous presence of damage creation will lead to shorter
lifetimes than those derived for non damaging behaviour. It is the purpose of this paper to
examine this reduction in the case of creep buckling of columns.

The basic creep law and damage law to be employed here will first be stated and discussed in
some detail. The main results of the theory of non damaging creep buckling will then be reviewed.
A simplified structural model will be presented, which incorporates the main features of a column
subject to both creep strain and creep damage. Finally the behaviour of this model will be
analyzed and discussed.

2. CREEP LAWS AND DAMAGE LAWS

Stationary creep analyses are usually based on a law of stationary creep having the form

dE
dt = F(a). (1)

Here E denotes strain, a stress, t time and F a usually nonlinear function, often taken as a simple
power function (Norton's law). This law is established from creep strain measurements at early
stages of constant load creep tests, where the stress is approximately constant in time. An
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extension of (1) to cases of time variable stress is often stated in the form

The added term corresponds to an instantaneous stress-strain relation of the form

E = G(U).

(2)

(3)

The creep law (2) is a generalization of a form first suggested by Odqvist[5J, who took G(u) as a
simple power function.

A damage law closely corresponding to the stationary creep law (1) was proposed by
Kachanov [6] in the form

dw
di=!(s),

Here w denotes damage, and s is a net stress defined by

us=--
l-w'

(4)

(5)

The function f was taken by Kachanov as a simple power function.
If damage is created also at sudden increases in the net stress, the damage law (4) may be

extended in the same way as was done with the creep law (1), see Hult and Broberg [7J, to yield

The added term corresponds to an instantaneous stress-damage relation of the form .

w = g(s).

(6)

(7)

The presence of damage will necessarily also affect the rate of creep strain, and the following
generalization of (2) has been suggested, see Broberg [8J

dE , ds
dt = G (s) dt +F(s). (8)

If no damage is created, equation (8) reduces to equation (2).
If the term corresponding to instantaneous strain is deleted from equation (8), a creep law

earlier suggested by Rabotnov [3] is obtained.
The behaviour of a tensile bar subject to an instantaneously applied constant load and obeying

the damage and creep laws (6) and (8) has been examined by Broberg [8]. The main results may be
summarized as follows.

(a) Rupture may occur already during load application, before the intended constant .load
level is reached. Under certain conditions de/dP ~oo and dw/P ~oo at some load P = PRo The
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corresponding strain E=ER and damage W =WR are finite quantities (ER < 00, WR < 1), i.e. both
elongation and damage are of limited magnitude in the ruptured bar. For non damaging, i.e.
completely ductile materials such instantaneous tensile instability was analysed already by
Considere19].

(b) If instantaneous rupture does not occur, i.e. if the applied load is smaller than the rupture
load PR , rupture will occur after a certain time under load. It is found that dE /dt ~ 00 and
dw /dt ~ 00 at 'Ii finite time t = t•. The corresponding strain E = E. and damage W = w. are still finite
quantities (E. < 00, w. < 1). For non damaging materials such delayed tensile instability, usually
denoted ductile creep rupture, was first analysed by Hoff [10]. For non deforming, i.e. completely
brittle, materials obeying the damage law (4), a creep rupture lifetime was derived by
Kachanov [6]. He also considered a simplified case of mixed ductile-brittle creep rupture.

(c) The two kinds of tensile rupture, viz. instantaneous and delayed, may be given a common
interpretation.

The state of the bar is defined by the three variables P, E and w, and hence may be represented
by a point in a P, E, w-space. The unloaded, unstrained, undamaged state corresponds to the
origin. Upon loading the state point will move out in the first octant, away from the origin.
Instability, i.e. tensile rupture, will occur when the point reaches a certain surface, convex
towards the origin and fixed in the P, E, w-space (Fig. la). Instantaneous load application

p

E

Fig. la. Instability surface for tensile case.

corresponds to the path OBA, where A is the instability point, located on the instability surface,
corresponding to instantaneous rupture. If the load increase is terminated at B, and the load P is
kept constant, the path BC will be followed. Here C is located on the instability surface and
corresponds to creep rupture. For the two extreme cases of purely ductile (w == 0) and purely
brittle (E == 0) behaviour the corresponding paths are shown in Fig. Ib, marked with I and"
respectively. The instability surface then corresponds to instability curves, marked as shaded
curved lines. The existence of such a common instability curve for the purely ductile case was
earlier noted by Carlson[1 I].

In the sequel the behaviour of a compressed, slightly curved, column will be examined under
similar conditions. Strong similarities with the tensile instability phenomena will be brought out.
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Fig. lb. Instability curves for purely ductile (') and purely brittle (") tensile cases.

3. CHARACTERISTICS OF NON DAMAGING, DUCTILE
CREEP BUCKLING

Two rather different approaches to the problem of creep buckling have been proposed:
(a) Rabotnov and Shesterikov [12] considered the stability of an axially loaded straight

column subject to ductile creep deformation. Including inertial mass in the analysis they
formulated a criterion for the column to be stable after a certain time under load, considering the
response to an infinitesimal disturbance of the straight equilibrium form. Linearization allowed a
critical time to be determined after which the column ceased to be stable.

(b) Hoff [13,14] analysed the deformation of an initially slightly curved column subject to
ductile creep deformation under constant axial load. Inertial effects were disregarded. A critical
time was determined after which the rate of deflection became infinite.

These two approaches to the ductile creep buckling problem have been compared mainly with
respect to applicability in design work (see Hoff[l5, 16]). Although the Rabotnov-Shesterikov
analysis is of strong conceptual interest, the Hoff type analysis has become predominant in
application oriented studies. One main reason for this is that initial imperfections, which form a
basis of the Hoff approach and which have a decisive influence on the critical time, are always
present in real columns.

For the same reason the present study of creep buckling with damage will deal with an initially
curved column, and Hoff's main results for the non damaging case will therefore first be briefly
reviewed.

The creep law was taken in the form

de B ""dO' B ndt = 00' (jf+ 0' ; l<no<n

see (2) above.
The first analysis dealt with statically determinate H type cross sections and the results were

later extended to other cross sectional forms. The column was assumed to have a slight sinusoidal
initial curvature, and to retain the sinusoidal form throughout the buckling process. The midpoint
deflection 8 was determined as a function of axial load P and time t. For step type loading the
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Fig. 2. Buckling of column. Shaded curve indicates instability. ABC shows instantaneous buckling and ABD
creep buckling.
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resulting deflection versus load is as shown in Fig. 2, where 800 is the initial midspan deflection.
On account of the nonlinear relation between stress and strain or strain rate the compressed
column will not retain its initial form (see Fig. 3). Later studies applying Fourier series have
therefore been made to find the true deflected form. Furthermore, the influence of deloading in
part of the cross section has been examined, etc.

In the creep law used by Hoff elastic deformation was disregarded. Including a term for linear
elastic deformation Hult[l7] calculated a corresponding shortening of the time to buckling.

4. SIMPLIFIED COLUMN MODEL

For highly nonlinear dependence of strain and/or strain rate on stress the column in Fig. 3will
take a strongly pointed shape. Therefore, to simplify the analysis all deformation and damage will
be assumed here to take place in one cross section only. For materials obeying the creep law
E- un this corresponds to the limiting case n = 00. The concept of a creep hinge has previously
been used, e.g. in analyses of creep buckling in frameworks [18]. Here it will be generalized to
include also damage creation.

Consider a column consisting of two rigid parts joined by a "creep and damage hinge"
according to Fig. 4. No bending moment can be transmitted through the ends of the column. The

unloaded

p

p
t: 0

loaded

p

P
t>O

Fig. 3. Creep buckling of slightly curved column.
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Fig. 4. Simplified column model.

angle 6 is assumed to be small. Then the bending moment at the hinge is

M==PL6

where P is the compressive force, L is half the column length and e is the end point slope of the
column. In analogy to equation (5) we define an effective hinge moment as

MS==­
l-w

where w is the damage. Hence

S == PL6
l-w'

The rotation of the hinge, away from the initial state is described by the one variable

28 == 26 - 2600•

(9)

(to)

In analogy to equations (8) and (6) the following deformation and damage laws for the hinge will
be assumed:

d8 == G'(S) dS+F(S)
dt dt

dw == '(S) dS+I(S)dt g dt .

This hinge model does not take into account the differences in tensile and compressive behaviour.
From earlier studies of ductile creep buckling it is concluded that such a simplification does not
appreciably affect the behaviour of the column.

Considering equation (to) these will be written as

d6 == G'(S) dS +F(S) dt

dw == g'(S) dS +I(S) dt.

(11)

(t2)
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Relations (9), (11) and (12) constitute the governing equations for the column model. They will be
analysed for the case of step loading

P =PoH(t)

where H(t) is the Heaviside unit step function.

5. CREEP BUCKLING ANALYSIS

The initial conditions for @(t) and w(t) are

8(0-) =800

w(O-) = O.

The development of @(t) will be studied first during load application (0- < t < 0+) and then for the
creep process (t > 0+). Conditions for instability will be established for both these phases.

Eliminating formally dS and dw from equations (9), (11) and (12) we obtain

d8{PL8 - S2g,(S) - SPLG'(S)} =SL8G'(S) dP
+{PLeF(S) - S2[F(S)g'(S) - !(S)G'(S)]} dt. (13)

If on the other hand dS and d8 are eliminated we have

dw{PLe - S2g,(S) - SPLG'(S)} = SL8g'(S) dP
+{PL eftS) +PLS[F(S)g'(S) - f(S)G'(Sm dt. (14)

Time interval 0- < t < 0+
Equations (13) and (14) show that (d8/dP)-+oo and (dw/dP)-+oo when PL8- S2g'(S)­

SPLG'(S)-+O. We define this to be a situation of instantaneous buckling (mixed ductile and
brittle).

Time interval t > 0'"
From equations (13) and (14) we have (de/dt)-+oo and (dw/dt)-+oo when PLe - S2g'(S)­

SPLG'(S)-+O. This will be referred to as a situation of creep buckling (mixed ductile and brittle).
Hence a common condition for both kinds of buckling exists, viz.

P.Le. - S.2g'(S.) - S.P.LG'(S.) = 0

or considering equation (9)

P.L8. {_I_ g , (p.Le.) +1- G' (P.L@·)}=l
1- w. I - w. I - w. e. I - w.

(15)

(16)

where the subscript * indicates instability. It is necessary that w. < 1 and that e. is finite except
for some trivial cases. The functions f, F, G', g' must be finite in the corresponding 8-interval.
Note that P not needs to be constant. If P is a continuous function of t the statement about de/dt
and dw/dt still holds. When P is discontinuous, the instantaneous buckling concept applies.
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Fig. 5. Instability surface for compressive case.

Equation (16) defines an instability surface in the P, e, w-space, see Fig. 5. In Fig. 5 the path
ABC denotes the development of e and w for instantaneously increasing P. Buckling will occur
at C when P = P.i, e =e. i and w = W.i. If Po < p. i the path ABD will be followed. Creep
buckling will occur at D when e = e.c and W = W. C '

The time to reach creep buckling may be determined from equations (13) and (14) which, for
P = Po = const, take the forms

dw
dT=k(po,e,w).

(17)

(18)

Step by step integration maps out the path BD in the Po, e, w-plane. The creep buckling time is
obtained from the simultaneous fulfilment of the conditions d6/dt ~oo and dw/dt ~OO. The

e

u

:! "'-----t-------\---+---'"c

w

e

Fig. 6. Development of e and w during instantaneous and creep loading.
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starting values e =eo and w = Wo (see Fig. 6) for the integration are taken from the analyis of the
instantaneous loading.

Numerical calculations will not be undertaken here, since experimental results are yet very
meager in this area.

6. DISCUSSION

The two extreme cases of purely ductile instability (w == 0) and purely brittle instability «(J == 0)
are of interest and will be studied in some detail.

Ductile instability (w == 0)
If the functions F and G' are taken as power functions equations (9) and (11) yield the same

result as found previously by Hoff.
This case corresponds fully to the one of ductile tensile instability [11].

Brittle instability «(J == 0)
The functions f and g are chosen as simple power functions, i.e.

g(S) = CoS'o

f(S) = CS'.

Then equations (9) and (12) take the forms

S = PLeoo
1-w

dw = PoCOS'o-1 dS + CS' dt.

(19)

(20)

Load application. By integration of equation (20) we have for the time interval 0- < t < 0+

w = CoS'o

or considering (19)

(21)

The instability condition dw/dP = 00 at w = W'ib and P = P'ib yields with equation (21)

Constant load. With P = Po < P' ib follows from equations (19) and (20)

(22)

(23)

C '0 (1 ),+1
Cm't = Po om (1- W r-'o _ - w

,,- Po P +1
C '0 (1 ),+1"0 om (1- wor-'o + - Wo
,,- Po ,,+ 1

(24)
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where m = PoL 8 00• This gives dwldt -+00 at w = W.b, where

from which follows

(25)

From (24) is then found the corresponding instability time t.b , given by

C "t = 1+ Po (C "0)(1+")/(1+"0) +_1_ (1- )1+" _ poCom "0 (1- )"-"0 (26)
m °b (1 )( ) Po om 1+ Wo Wo •+ P P - Po P P - Po

For any given load Po < P·/b and initial deflection 8 00 the corresponding instantaneous damage
Wo, resulting from load application, may be found from equation (21). The instability time tO b is
then obtained from equation (26).

These results may be summarized in a diagram as shown by Fig. 7. The close similarity with
Fig. 1b, referring to purely brittle tensile rupture, is evident.

p

~ib

Fig. 7. Instability curve for purely brittle case.

For materials without instantaneous damage creation Co == 0, and hence (26) degenerates to

For an initially completely undamaged material Wo = 0, and hence

This expression is fully equivalent to the expression for tensile, brittle rupture lifetime t. derived
by Kachanov [6]

C " 1
(j t. = 1+ p'
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In a similar way a close correspondence exists between tensile and compressive instability
also in the more general situation, when both ductile deformation and brittle damage occur
simultaneously. This is clearly shown by the strong similarity between Figs. la and 5.
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